Lycée secondaire Ibn Khaldoun Rades 3^{ème} EG₁

Devoir de contrôle n°2 Mathématiques Année Scolaire 2009-2010 Durée : 1h30 min

Exercice n°1: (6 points)

Le tableau ci-dessous donne le montant annuel des dépenses du régime général de la Sécurité Sociale, en milliards de dinars de l'année 1991 à l'année 2000.

Année	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
Rang de l'année x _i	1	2	3	4	5	6	7	8	9	10
Dépense y_i milliards dinars	147,42	155,35	165,10	170,13	182,33	183,09	189,95	194,83	203,37	222,27

1)

- a) Dessiner le nuage de points $M_i(x_i;y_i)$ dans un repère orthogonal adapté.
- b) Déterminez les coordonnées de G, point moyen de nuage. Placez le point G.
- 2) Le modèle étudié dans cette question sera appelé « droite de Mayer ».
- a) G_1 désigne le point moyen des 5 premiers points du nuage et G_2 celui des 5 derniers points.

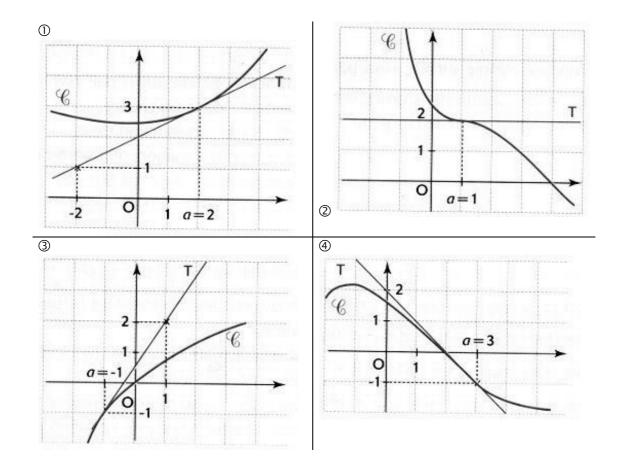
Déterminer les coordonnées de G_1 et G_2 . Placez ces points sur le graphique précédent et tracez la droite (G_1G_2) . Le point G appartient-il à cette droite ?

b) Donnez l'équation de la droite (G_1G_2) sous la forme y = ax + b.

Exercice n°2: (5 points)

($\mathscr C$) représente une fonction dérivable sur $\mathbb R$ et la droite T est tangente à ($\mathscr C$) au point d'abscisse a.

Dans chaque cas détermine f'(a) et donne une équation de la tangente T.



Page1/2

Exercice n°3: (6 points)

Donner la dérivée et l'ensemble de dérivabilité de chaque fonction.

$$f(x) = x^7$$

$$g(x) = \frac{1}{x^{11}}$$

$$h(x) = \sqrt{-2x + 3}$$

$$i(x) = \left(2x + \frac{1}{x}\right)(3x + 1)$$

$$j(x) = \frac{2}{\left(x^3 - 1\right)^2}$$

$$k(x) = \frac{2x^2 + 3x - 2}{x + 2}$$

Exercice n°4: (3 points)

On considère la fonction f définie et dérivable sur $]0,+\infty[$

- a) Déterminez sa fonction dérivée.
- b) En déduire la limite de $\frac{x\sqrt{x}-8}{x-4}$ quand x tend vers 4.

